Initial Conditions for Kalman Filtering: Prior Knowledge Specification

نویسنده

  • EVGENIA SUZDALEVA
چکیده

The paper deals with a selection of the initial state for Kalman filtering. The prior knowledge about it can be highly uncertain. In practice the initial state mean and covariance are often chosen arbitrarily. The present paper considers the problem from the position of knowledge elicitation and proposes a methodology to extract the prior knowledge from available information by the respective processing in order to choose the adequate initial conditions. The suggested methodology is based on utilization of the conjugate prior distribution for models, belonging to the exponential family. Key–Words: Kalman filtering, prior knowledge, state-space model, exponential family

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prior knowledge processing for initial state of Kalman filter

The paper deals with a specification of the prior distribution of the initial state for Kalman filter. The subjective prior knowledge, used in state estimation, can be highly uncertain. In practice, incorporation of prior knowledge contributes to a good start of the filter. The present paper proposes a methodology for selection of the initial state distribution, which enables eliciting of prior...

متن کامل

Robust Filtering for State and Fault Estimation of Linear Stochastic Systems with Unknown Disturbance

This paper presents a new robust filter structure to solve the simultaneous state and fault estimation problem of linear stochastic discrete-time systems with unknown disturbance. The method is based on the assumption that the fault and the unknown disturbance affect both the system state and the output, and no prior knowledge about their dynamical evolution is available. By making use of an op...

متن کامل

One-Day-Ahead Load Forecasting using nonlinear Kalman filtering algorithms

In this paper, we consider the problem of 24-hour ahead short-term load forecasting; the formulation is based on the nonlinear Kalman filtering. Our formulation takes into account weather conditions as well as previous trends. Effects of weather as well as prior consumptions are nonlinear functions; hence our choice. We compare our proposed method with the standard Kalman filtering approach and...

متن کامل

Robust Filtering for State and Fault Estimation of Linear Stochastic Systems with Unknown Disturbances

This paper presents a new robust filter structure to solve the simultaneous state and fault estimation problem of linear stochastic discrete-time systems with unknown disturbances. The method is based on the assumption that the fault and the unknown disturbances affect both the system state and the output, and no prior knowledge about their dynamical evolution is available. By making use of an ...

متن کامل

FIR Filtering of State-Space Models in non-Gaussian Environment with Uncertainties Plenary Lecture

This paper examines the recently developed p-shift iterative unbiased Kalman-like algorithm intended for filtering (p = 0), prediction (p > 0), and smoothing (p < 0) of linear discrete time-varying state-space models in non Gaussian environment with uncertainties. The algorithm is designed to have no requirements for noise and initial conditions and becomes optimal on large averaging intervals....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007